On Linearizing Systems of Diffusion Equations
نویسندگان
چکیده
We consider systems of diffusion equations that have considerable interest in Soil Science and Mathematical Biology and focus upon the problem of finding those forms of this class that can be linearized. In particular we use the equivalence transformations of the second generation potential system to derive forms of this system that can be linearized. In turn, these transformations lead to nonlocal mappings that linearize the original system.
منابع مشابه
A New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme
Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...
متن کاملA New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme
Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...
متن کامل10.626 Lecture Notes, Transient diffusion
Notes by ChangHoon Lim 1. Warburg impedance for semi-infinite oscillating diffusion Warburg (Ann. Physik. 1899) is credited with the first solution to the diffusion equation with oscillating concentration at the boundary, which is related to the diffusional (or mass transfer) impedance of electrochemical systems. An interesting point made in the first part of the class is that the very same mat...
متن کاملDirect linearizing transform for three-dimensional discrete integrable systems: the lattice AKP, BKP and CKP equations.
A unified framework is presented for the solution structure of three-dimensional discrete integrable systems, including the lattice AKP, BKP and CKP equations. This is done through the so-called direct linearizing transform, which establishes a general class of integral transforms between solutions. As a particular application, novel soliton-type solutions for the lattice CKP equation are obtai...
متن کاملPositivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations
Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006